Quantum Wells,and Examples or application of Quantum Wells.

 Quantum Wells,and Examples or application of Quantum Wells.

The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occupy a planar region. The effects of quantam confinment take place when the quantum well thickness becomes comparable to the de Broglie wavelength of the carriers (generally electrons and holes), leading to energy levels called "energy subbands", i.e., the carriers can only have discrete energy values.



A wide variety of electronic quantum well devices have been developed based on the theory of quantum well systems. These devices have found applications in lasers, photodetectors, modulators, and switches for example. Compared to conventional devices, quantum well devices are much faster and operate much more economically and are a point of incredible importance to the technological and telecommunication industries. These quantum well devices are currently replacing many, if not all, conventional electrical components in many electronic devices.

The concept of quantum well was proposed in 1963 independently by Herbert Kroemer and by Zhores Alferov and R.F. Kazarinov.

PHYSICS

Quantum wells and quantum well devices are a subfield of solid-state physics that is still extensively studied and researched today. The theory used to describe such systems uses important results from the fields of quantum physics, statistical physics, and electrodynamics.

HISTORY OF QUANTAM WELL

The semiconductor quantum well was developed in 1970 by Esaki and Tsu, who also invented synthetic superlattices.They suggested that a heterostructure made up of alternating thin layers of semiconductors with different band-gaps should exhibit interesting and useful properties. Since then, much effort and research has gone into studying the physics of quantum well systems as well as developing quantum well devices

The theory surrounding quantum well devices has led to significant advancements in the production and efficiency of many modern components such as light-emitting diodes, transistors for example. Today, such devices are ubiquitous in modern cell phones, computers, and many other computing devices.

KNOW MORE ABOUT EINSTEIN VS QUNTAM MECHANICS

FABRICATION

Quantum wells are formed in semiconductors by having a material, like gallium arsenide, sandwiched between two layers of a material with a wider bandgap, like aluminum arsenide. (Other examples: a layer of indium gallium nitride sandwiched between two layers of gallium nitride.) These structures can be grown by molecular beam epitaxy or chemical vapor deposition with control of the layer thickness down to monolayers.

Thin metal films can also support quantum well states, in particular, thin metallic overlayers grown in metal and semiconductor surfaces. The vacuum-metal interface confines the electron (or hole) on one side, and in general, by an absolute gap with semiconductor substrates, or by a projected band-gap with metal substrates.

There are 3 main approaches to growing a QW material system: lattice-matched, strain-balanced, and strained.

  • Lattice-matched system: In a lattice-matched system, the well and the barrier have a similar lattice constant as the underlying substrate material.With this method, the bandgap difference there is minimal dislocation but also a minimal shift in the absorption spectrum.
  • Strain-balanced system: In a strain-balanced system, the well and barrier are grown so that the increase in lattice constant of one of the layers is compensated by the decrease in lattice constant in the next compared to the substrate material. The choice of thickness and composition of the layers affect bandgap requirements and carrier transport limitations. This approach provides the most flexibility in design, offering a high number of periodic QWs with minimal strain relaxation.
  • Strained system: A strained system is grown with wells and barriers that are not similar in lattice constant. A strained system compresses the whole structure. As a result, the structure is only able to accommodate a few quantum wells.

APPLICATIONS

THIS QUANTUM MECHANICS WELL HAS TO MANY APPLICATIONS. SOME ARE LISTED HERE

  • Saturable absorber
  • Thermoelectrics
  • Solar cells
  • Single-junction solar cells
  • Multi-junction solar cells
  • Bandgap energ

OVERVIEW

One of the simplest quantum well systems can be constructed by inserting a thin layer one type of semiconductor material between two layers of another with a different band-gap. Consider, as an example, two layers of AlGaAs with a large bandgap surrounding a thin layer of GaAs with a smaller band-gap. Let’s assume that the change in material occurs along the z-direction and therefore the potential well is along the z-direction (no confinement in the x–y plane.). Since the bandgap of the contained material is lower than the surrounding AlGaAs, a quantum well (Potential well) is created in the GaAs region. This change in band energy across the structure can be seen as the change in the potential that a carrier would feel, therefore low energy carriers can be trapped in these wells




Comments

Popular posts from this blog

BLACK HOLES AND TYPE OF BLACK HOLES AND FACTS

what is the role of chlorophyll in the preparation of food in plants ? what is photosynthesis ?